Abstract

The La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite manganite compounds have been fabricated by solid-state reaction method to investigate structural, magnetic and magnetocaloric properties. All samples are indexed in the Rhombohedral structure with R3‾c space group by using the Rietveld refinement method. The Curie temperature decreases from 336 K to 313 K when Ru (x = 0.1) is added to the structure and it becomes 335 K for x = 0.2. Maximum magnetic entropy change and relative cooling power values were calculated as 3.17, 3.15, 3.06 J kg−1 K−1 for 5 T magnetic field change and 214.40, 160.20, 128.38 J kg−1 under 4 T magnetic field change for x = 0.0, 0.1 and 0.2 in La0.7Pb0.3Mn1-xRuxO3, respectively. From the H/M vs M2 plots obtained from isothermal magnetization curves, it is found that all samples exhibit a second-order magnetic phase transition, which shows reversible magnetocaloric effect. Under the light of all observed results, La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite manganite compounds can be considered as candidate materials above room temperature range magnetic cooling systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.