Abstract
The effect of B on microstructure and various properties including coefficient of thermal expansion (CTE), HV hardness, and both smooth and notch stress rupture properties of modified Thermo-Span alloy was studied. The results show that B hardly dissolves in matrix. Increasing B content constrains the formation of Laves phase and grain boundary (GB) precipitation of Laves and G phases, but promotes the formation of M(Co, Fe)NbB boride. In low B doped alloy, its intrinsic high susceptibility to intergranular cracks leads to reduced rupture life and notch sensitivity. Increasing B improves grain boundary cohesion, tying up vacancies and reducing GB diffusion, which constrains the nucleation and propagation of intergranular microcracks, prolongs the rupture life and eliminates the notch sensitivity in the new alloy. Compared with conventional Thermo-Span alloy, the B doped modified alloy shows lower CTE and improved notch sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.