Abstract
Performance enhancement in terms of stall margin increment, increased pressure rise coefficient and increased efficiency is of great need for low speed axial fans. Stacking line modifications in terms of sweep, skew, dihedral or combination of these, as well as blade tip geometry modifications are assumed to be one of the ways to achieve finite performance improvement. Non radial stacking of blade profiles modifies secondary flows, tip vortex effects, hub passage vortex and thus affects aerodynamic performance parameters such as stall margin, efficiency, pressure rise, blade loading. In literature many studies have confined to comparison of few cases which led to conflicting results as modification of stacking line may have different effects in different cases. In the present work, comparison of performance of axial fan rotor with three different blade configurations BSL (baseline), SWP (swept blade) and EXTN (swept blade with extended tip) are considered. The BSL configuration is designed on basis of non-free vortex design. The SWP configuration is obtained by shifting radial stacking line of the BSL in axial flow direction by 10° (Forward sweep). The EXTN configuration is obtained by extending tip profile on pressure surface as well as suction surface by 3% locally. Experiments have been conducted on these three configurations to study effects of these modifications on aerodynamic performance. The flow field has been surveyed using Kiel probe, Three hole pressure probe at many flow rates starting from fully open to fully closed. Unsteady flow analysis at exit of rotors of all configurations is carried out using fast response pressure probe. Experimental results show slight performance improvement in terms of increased stall margin, efficiency, as well as total pressure rise for SWP rotor as well as EXTN rotor compared to BSL rotor at low flow coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.