Abstract

This paper describes the study of the acoustic field of a fluid-filled pipe subjected to axial stress based on the acoustoelastic theory. The pipe with applied axial stresses can be approximated as a transversely isotropic pipe, and hence, its acoustic fields can be expressed using potential functions. The velocity changes of longitudinal wave modes with applied stresses are analyzed for the pipe filled with oil by an analytical method. It was found that the longitudinal mode velocity changes almost uniformly with the applied stresses. The high speed and low frequency plateaus of longitudinal wave modes are sensitive to stress. The relationship between stress and the velocity change of the guided wave is given. The results indicate that non-destructive testing techniques using longitudinal wave modes have strong potential to identify and monitor the stress levels in pipe structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.