Abstract

Multiaxial fatigue tests were conducted on Sn–3.5Ag solder specimens under axial/torsional loading at room temperature. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of axial stress and shear strain amplitude. A power relationship of ratcheting strain rate versus fatigue life was observed. Equivalent strain approach and critical plane approaches were evaluated with fatigue life data obtained in the tests. Since those approaches excluded the consideration of the ratcheting strain and mean stress, the methods for fatigue life prediction were improper for multiaxial fatigue with ratcheting strain. Coffin model, considered the effect of ratcheting on fatigue life depending on the ratio of ratcheting strain to material ductility, brought the fatigue life predictions on non-conservative side if the ratcheting deformation was large. For this reason, a model with the maximum shear strain range and axial ratcheting strain rate was proposed as a new damage parameter. The new model could not only describe the fatigue life in torsion test, but also predicted torsional fatigue life of the lead-free solder with axial ratcheting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call