Abstract

A series of axial di-substituted silicon(IV) phthalocyanines with electron-donating and electron-withdrawing properties were synthesized. The compounds were characterized by elemental analysis, 1H NMR, IR, and ESI-MS. The effect of axial ligands on the photophysical properties of silicon phthalocyanines was studied by UV/Vis, steady-state and time-resolved fluorescence spectroscopic analyses. Compared with silicon phthalocyanines with electron-donating properties, silicon phthalocyanines with electron-withdrawing properties could expand the π-conjugation in the dyes, resulting in a redshift of Q bands, lower fluorescence emission intensity and fluorescence quantum yields, but increasing fluorescence lifetimes. These results strongly suggest that the molecular design of phthalocyanines is essential for construction of photoactive materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call