Abstract

The kinetics of the assembly of two complementary fragments of oxidized horse heart cytochrome c (cyt c), namely the heme-containing fragment-(1-56) and the fragment-(57-104), have been characterized at different pH values. At neutral pH the fragment-(1-56) is hexacoordinated and has two histidines axially ligated to the heme-Fe(III) (Santucci, R., Fiorucci, L., Sinibaldi, F., Polizio, F., Desideri, A., and Ascoli, F. (2000) Arch. Biochem. Biophys. 379, 331-336), thus mimicking what occurs in the folding intermediate of cyt c. The kinetics of the formation of the complex between the two fragments are characterized at pH 7.0 by a slow rate constant that is independent of the concentration of the reactants; conversely, at a low pH the kinetics are much faster and depend on the concentration of the fragments. This behavior suggests that the rate-limiting step observed in the recombination process of the fragments at neutral pH (that leads to the final coordination of Met-80) has to be ascribed to the detachment of the "misligated" histidine. Thus, the faster recombination rate at a low pH can be related to the fact that histidine is protonated and not able to coordinate to the metal. Furthermore, the independence of the rate constant on the concentration of the reactants observed at pH 7.0 can be accounted for by the occurrence of a conformational transition, which takes place immediately after the two fragments collapse together, likely simulating what induces the detachment of the misligated histidine during cytochrome folding.

Highlights

  • Protein folding is a central topic in the modern structural biology and has attracted a great deal of interest in the last decade

  • The folding of cyt c is characterized by a variety of long lived intermediates, some of which are ascribed to proline isomerization [7], whereas others are referable to non-native heme ligation [8, 9]

  • An important aspect in the kinetic study of cyt c folding is the formation at a neutral pH of a misligated compact intermediate having a histidine side chain (His-26 or His-33) axially ligated to the sixth coordinate position of the heme-Fe(III) in place of Met-80 [10, 11]

Read more

Summary

Introduction

Protein folding is a central topic in the modern structural biology and has attracted a great deal of interest in the last decade.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.