Abstract
The effect of austenitizing temperature were investigated on the microstructure and mechanical properties of 12%Cr steel. Low-temperture austenitizing below 1000°C induced the carbide coarsening during subsequent tempering at 750°C for 1 hr due to the nucleation effect of undissolved M23C6. The large and spheroidized carbides enhanced the subgrain growth. On the other hand, the complete dissolution of M23C6 above 1000°C caused the fine carbide formation on lath boundaries, which retarded the subgrain growth during tempering. Furthermore, the dissolution of Nb(C, N) above 1100°C enhanced the tempering resistance through increasing the stability of lath morphology and reducing the growth rate of M23C6. The increase in strength with increasing austenitizing temperature was attributed to the fine carbide distribution and the high dislocation density. Further, as the austenitizing temperature increased, the impact energy markedly reduced, due to the large proir austenite grain size and the high strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.