Abstract

Purpose – The purpose of this paper is to investigate the effect of typical morphologies of Au-Sn IMCs (intermetallic compounds) at the interfaces of solder and pads on shear properties of laser reflowed micro-solder joints. Design/methodology/approach – Sn-2.0Ag-0.75Cu-3.0Bi (SnAgCuBi) solder balls (120 μm in diameter), pads with 0.1, 0.5, 0.9 or 4.0 μm thickness of Au surface finish, and different laser input energies were utilized to fabricate micro-solder joints with Au-Sn IMCs having different typical morphologies. The joints were performed by a shear test through a DAGE bond test system. Fracture surfaces of the joints were analyzed by scanning electron microscopy and energy-dispersive X-ray spectrometry to identify fracture modes and locations. Findings – Morphologies of Au-Sn IMCs would affect shear properties of the joints remarkably. When needle-like AuSn4 IMCs formed at the interfaces of solder and pads, almost entire surfaces presented the manner of ductile fracture. Moreover, shear forces of this kind of solder joints were higher than those of joints without Au-Sn IMCs or with a nearly continuous/continuous Au-Sn IMCs layer. The reason was that the shear performance of the solder joints with needle-like AuSn4 IMCs was enhanced by an interlocking effect between solder and needle-like AuSn4 IMCs. As a nearly continuous or continuous Au-Sn IMCs layer formed, the fracture surfaces presented more character of brittle than ductile fracture. However, if an Au layer still remained under Au-Sn IMCs, the shear performance of the joints would be enhanced. Originality/value – The results in this study can be used to optimize microstructures and shear properties of laser reflowed micro-solder joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call