Abstract

We studied the effect of atorvastatin on the adhesive phenotype of human endothelial cells (HUVEC) stimulated by tumor necrosis factor (TNF)-alpha. Surface expression of adhesion molecules on HUVEC was examined by flow cytometry and confocal microscopy, and adhesion of monocytes (human THP-1 cell line) was measured in vitro under flow conditions. In TNF-alpha-activated HUVEC, atorvastatin significantly enhanced surface expression of vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, E-selectin, and fractalkine, when compared with TNF-alpha stimulation alone. This enhancement was reversed by mevalonate or geranylgeranyl pyrophosphate (GGPP) and was mimicked by an inhibitor of geranylgeranylation. The enhancing effect of atorvastatin was restricted to TNF-alpha-inducible adhesion molecule and was the reflect of an increased protein synthesis (mRNA and protein) and not of a reduced shedding. Confocal microscopy examination showed that atorvastatin also altered the surface distribution of adhesion molecules. Adhesion of human THP-1 cells on TNF-alpha-activated HUVEC was significantly reduced by atorvastatin (-42% at 1 microM). Mevalonate or GGPP restored the TNF-alpha-induced adhesive potential. These results show that atorvastatin, by inhibiting prenylation of G proteins, enhances the TNF-alpha-induced expression of adhesion molecules at the endothelial cell surface and also alters their surface distribution which may account for the reduced binding of monocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.