Abstract

With the development of industrialization, the use of mercury in industry has become more and more widespread, causing serious impacts on the environment. It is therefore urgent to find new effective ways to combat mercury pollution. In this paper, The effect of C, O, P, Ni and Au doping on the adsorption of Hg atoms by WS2 has been investigated based on the first nature principle of density functional theory. The electronic structures and optical properties of the adsorbed systems were calculated after atomic doping. The results show that the absolute value of the adsorption energy of the intrinsic adsorption system is small and does not favour the adsorption of Hg on WS2. However, after C, P, Ni and Au doping, the adsorption energy of the system is significantly increased and a strong charge transfer between WS2 and Hg atoms occurs, as well as a significant change in the band gap of the structure. This suggests that atomic doping favors the adsorption of Hg by WS2. The effect of O doping on the adsorption system is not significant. In addition, a study of the optical properties revealed that the static dielectric constants of the system appeared to increase to varying degrees after the doping of the atoms. The doping of P, Ni and Au atoms increases the light absorption coefficient and contributes to the photocatalytic efficiency of the structures. The doped atoms cause a red shift in the reflectivity peak of the adsorbed system. In summary, the doping of C, P, Ni and Au enhances the adsorption of Hg atoms on WS2. O doping has less effect on the adsorption of Hg on WS2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.