Abstract

The effect of atmospheric water vapor on the thermal dehydration of sodium carbonate monohydrate (SC-MH), which was characterized as cubic grains of a compacted composite comprising columnar SC-MH crystals and a matrix, was systematically assessed using a humidity-controlled thermogravimetry system at various atmospheric water vapor pressures (p(H2O)). The thermal dehydration of the SC-MH compacted composite occurred via an induction period (IP) and partially overlapping two-step mass loss steps due to the thermal dehydration of the SC-MH matrix and columnar crystals. All component reaction steps were retarded with an increase in the p(H2O) value. The kinetics of individual reaction steps were universally described over different temperatures and p(H2O) values based on a kinetic equation that considered p(H2O) and the equilibrium pressure of the thermal dehydration. Additionally, the physico-geometrical consecutive surface reaction (SR) and subsequent phase boundary-controlled reaction (PBR) model was employed to describe the first mass loss step. The difference between the effects of atmospheric p(H2O) on SR and PBR processes was parameterized via an advanced kinetic analysis. The kinetic behavior of the second mass loss step was discussed based on a three-dimensional contracting geometry model with accelerating reaction interface advancement, where the changes in the rate behavior with atmospheric p(H2O) were explained by the total effect of atmospheric and self-generated p(H2O) on the kinetics. The present results provide additional insights into the independent-parallel thermal decomposition kinetics of composite materials by considering the effects of atmospheric and self-generated gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call