Abstract

Various surface treatments on zirconia have been reported for dental porcelain veneer. However, it has not been determined which of these treatments provide the highest bond strength. The purpose of this study is to compare the effect of airborne particle abrasion and atmospheric pressure plasma treatment on the shear bond strength between zirconia and dental porcelain veneer. The groups were divided into four groups according to the surface treatment method: the control group, the atmospheric pressure plasma treated group (group P), the airborne particle abrasion group (group A), the atmospheric pressure plasma treated group after the airborne particle abrasion (group AP). Atmospheric pressure plasma was applied on the specimens using a plasma generator (Plasma JET, POLYBIOTECH Co. Ltd., Gwangju, Korea) and airborne-particle abraded with 110 µm. The characteristics of surface treated zirconia were analyzed by 3D-OP, XRD, XPS and contact angle. The shear bond strength was tested using a universal testing machine. The shear bond strength of group P was significantly increased compared to that of the control group (P < 0.05). The shear bond strength of group AP was significantly increased as compared to group A (P < 0.05). There was no significant difference between the group P and group A (P > 0.05). As a result of this study, the atmospheric pressure plasma treatment showed significantly higher shear bond strength than control group, but similar to the airborne particle abrasion, and the atmospheric pressure plasma treatment after the airborne particle abrasion provided the highest shear bond strength. This study demonstrated that application atmospheric pressure plasma treatment on zirconia may be useful for increasing bond strength between zirconia and dental porcelain veneer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.