Abstract

Phytotron experiments were conducted to examine the impact of elevated atmospheric CO2 level (750 μmol mol−1) on the drought tolerance of winter barley (Petra), durum wheat (Mv Makaroni) and spring oat (Mv Pehely) varieties. Under drought stress conditions, the durum wheat variety was found to be unaffected by CO2 enrichment, as neither the biomass or grain yield nor the antioxidant enzyme activities changed compared to those at ambient CO2. Despite the fact that the spring oat variety had similar grain yield loss due to drought at both CO2 levels, it exhibited reduced antioxidant enzyme activities under less severe drought, indicating a slightly increased tolerance to drought. Winter barley, which exhibited an extremely positive reaction to CO2 enrichment at the control water supply level, also showed increased drought tolerance in response to high CO2. It had low glutathione reductase, glutathione-S-transferase and ascorbate peroxidase activities even at the most severe drought stress levels, while it could also fully compensate for the negative effects of drought on biomass and grain yield parameters when grown at elevated CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call