Abstract

Aspergillus flavus, a notorious saprobe and opportunistic plant pathogen, alters mycotoxin contamination and biochemical components in maize kernels during processing and storage, thereby reducing the possibilities of maize end use and compromising food safety. This study explored changes in mycotoxin production, fungal community succession and biochemical components in maize kernels stored at 20, 25 and 30 °C, exposed to A. flavus. Results showed that aflatoxin B1 concentration increased over time, reaching 4.88 μg/kg at 20 °C, 167.23 μg/kg at 25 °C and 349.64 μg/kg at 30 °C after 15 days of storage, whereas the zearalenone production was characterized by an increase followed by a decrease. Correspondingly, the number of molds gradually increased and reached a stable stage after 10 days. High-throughput sequencing of the internal transcribed spacer (ITS) revealed that Eurotium dominated the fungal communities, with A. flavus reaching maximum abundance in maize kernels stored at 30 °C for 15 days. Correlation analysis indicated that the relative abundance of A. flavus was significantly negatively correlated with the content of zein and moisture (P < 0.05). Moreover, the wet milling process of maize effectively eliminated the concentration of aflatoxin B1 and zearalenone from the starch. Pasting temperature and setback value of starch decreased while peak viscosity, final viscosity and breakdown value increased with storage. These findings indicate that interactions between the epiphytic fungal community and A. flavus at elevated storage temperatures aggravate both maize quality deterioration and mycotoxin contamination. Furthermore, they have a discernible impact on the pasting properties of starch. This insight informs strategies to control fungal infections during maize processing and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.