Abstract

We explore the snap-through instability in hyper-elastic cylindrical tubes during inflation, specifically investigating the influences of geometry and imposed axial tensile loads on both the bulging shape profiles and the initiation pressure of the bulge. We perform bulging experiments on latex rubber tubes with different parameters such as the length-to-diameter aspect ratio and axial tension. To complement these experiments, finite element simulations across various geometries and a theoretical analysis of an infinite-length tube are conducted. Our simulations reveal a critical aspect ratio that divides the bulging into two possibilities: short tubes exhibit whole bulging, while longer tubes show localized bulging. Both experimental and simulation findings indicate that as the aspect ratio and axial tensile load increase, the initiation pressure diminishes and then converges. Notably, when the axial tensile load surpasses the shear modulus, it obstructs snap-through in shorter tubes and neutralizes the influence of the aspect ratio on the initiation pressure. The outcomes of this research offer valuable perspectives on modulating the bulging mode and initiation pressure in tubular structures within soft devices, including soft pneumatic actuators and energy harvesters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.