Abstract

Organic molecules control calcite growth and crystal morphology, influence biomineralization processes, and offer clues for optimizing antiscalants for industry. Here we quantified the effect of amino acid monomers, aspartic acid (Asp1), and glycine (Gly1), and their polymers (Aspn, Asp5, and Gly5), on calcite growth rate, in a constant composition setup. Asp1 and its polymers inhibit growth, with rate decreasing as amino acid chain length increases. For 2 mM Asp1, fractional inhibition (FI, where 1 represents complete inhibition) was 0.54; for 0.0012 mM Aspn, FI = 0.94. Gly1 and Gly5 only marginally affect growth (−0.1 < FI < 0.1); indeed, they slightly promote growth at most tested concentrations. Fitting of adsorption isotherms (Langmuir, Langmuir–Freundlich, Flory–Huggins) confirmed that Asp polymers adsorb strongly, explaining their strong control on calcite growth, but Gly1 and Asp1 adsorb less due to competition with carbonate ions. ΔGads (Aspn) = −39 kJ/mol; ΔGads (Asp5) = −50 kJ/mol; ΔGads (Asp1)...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.