Abstract

Asiatic acid, a triterpenoid compound derived from Centella asiatica, has been demonstrated to have antioxidant and anti-inflammatory effects. The present study evaluated the effects of asiatic acid on hemodynamic alterations, renin-angiotensin system (RAS), oxidative stress, and inflammation in 2K-1C hypertensive rats. Renovascular hypertension was induced in male Sprague-Dawley rats and treated with vehicle, asiatic acid (30mg/kg/day), or captopril (5mg/kg/day) for 4weeks. We observed that 2K-1C hypertensive rats exhibited hemodynamic alterations such as high blood pressure, heart rate, hindlimb vascular resistance, and low hindlimb blood flow. Signs of RAS activation, such as increased plasma angiotensin II and serum angiotensin-converting enzyme activity, enhanced AT1R protein expression, and suppressed AT2R expression was observed in 2K-1C hypertensive rats. Overproduction of vascular superoxide, high levels of plasma MDA, low levels of plasma nitric oxide metabolites (NOx), and upregulation of gp91phox protein expression were observed in hypertensive rats. Furthermore, inflammation was observed in hypertensive rats, as evidenced by increased plasma TNF-α, NF-κB, and phospho-NF-κB protein expression. Asiatic acid or captopril alleviated hemodynamic alterations, RAS activation, oxidative stress, and inflammation in 2K-1C hypertensive rats. These findings indicate that asiatic acid is an antihypertensive agent that ameliorates hemodynamic alterations in 2K-1C hypertensive rats. This effect may involve one or both of the following mechanisms: the direct effect of asiatic acid on RAS activation, oxidative stress and inflammation, and/or asiatic acid acting as an ACE inhibitor agent to inhibit the Ang II-AT1R-NADPH oxidase-NF-κB pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.