Abstract

Hepatic microsonal cytochrome P-450 levels are significantly decreased (46–68%) in ascorbic acid-deficient guinea pigs. Studies attempting to elucidate the mechanism responsible for decreased cytochrome P-450 demonstrated that ascorbic acid status did not influence the turnover ( t 1 2 ) or the degradation of hepatic cytochrome P-450 heme. Urinary excretion of Δ-aminolevulinic acid (ALA) and coproporphyrin was significantly decreased (30 and 69% respectively) in ascorbic acid-deficient guinea pigs. Injections (ip) of ALA into ascorbic acid-deficient guinea pigs were not effective in returning cytochrome P-450 levels to values found in ascorbic acid-supplemented guinea pigs. In addition, plasma and hepatic iron and blood heme were related directly, while hepatic copper and plasma copper or ceruloplasmin were related inversely, to the ascorbic-acid status of the guinea pig. These data, along with past investigations on heme synthesis in the ascorbic acid-deficient guinea pig, are consistent with mechanisms proposing that ascorbic acid may influence: 1) apocytochrome P-450 synthesis, 2) binding of heme and apo-cytochrome P-450 to form active cytochrome P-450, and/or 3) incorporation of Fe++ into the heme moiety of cytochrome P-450, perhaps via changes in copper metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call