Abstract

We report an investigation of epitaxial germanium grown by chemical vapor deposition (CVD) on arsenic-terminated (211)Si, which is the preferred substrate in the USA for fabrication of night-vision devices based on mercury cadmium telluride (MCT) grown by molecular-beam epitaxy (MBE). The films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-sectional transmission electron microscopy (XTEM), and x-ray diffraction (XRD). Arsenic passivation was found to be effective in preventing cross-contamination of unwanted residual species present inside the reactor chamber and also in prolonging the evolution of layer-by-layer growth of Ge for significantly more monolayers than on nonpassivated Si. The two-dimensional (2D) to three-dimensional (3D) transition resulted in Ge islands, the density and morphology of which showed a clear distinction between passivated and nonpassivated (211)Si. Finally, thick Ge layers (∼250 nm) were grown at 525°C and 675°C with and without As passivation, where the layers grown with As passivation resulted in higher crystal quality and smooth surface morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.