Abstract

An extruded ZK60 magnesium alloy was subjected to artificial aging at 180 oC for an investigation of the effect of aging time on its precipitation behavior and mechanical properties. Uniaxial tensile tests were conducted to obtain the mechanical properties. Optical microscopy and transmission electron microscopy (TEM) were employed to observe microstructure change before and after aging treatment. It is shown that, both tensile yield strength and ultimate tensile strength increases with aging time. The fracture elongation after aging for 20 h reaches up to 21.0%, and the yield strength increases to 269.5 MPa, 19.4% higher than that of extruded specimens (un-aged), showing a good match of strength and ductility. Three newly-formed precipitates were observed after aging for over 20 h, among which particulate and dispersive precipitates should be responsible for the good combination of strength and ductility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.