Abstract

BackgroundBetween 1995 and 2000, KwaZulu–Natal province, South Africa, experienced a marked increase in Plasmodium falciparum malaria, fuelled by pyrethroid and sulfadoxine-pyrimethamine resistance. In response, vector control was strengthened and artemether-lumefantrine (AL) was deployed in the first Ministry of Health artemisinin-based combination treatment policy in Africa. In South Africa, effective vector and parasite control had historically ensured low-intensity malaria transmission. Malaria is diagnosed definitively and treatment is provided free of charge in reasonably accessible public-sector health-care facilities.Methods and FindingsWe reviewed four years of malaria morbidity and mortality data at four sentinel health-care facilities within KwaZulu–Natal's malaria-endemic area. In the year following improved vector control and implementation of AL treatment, malaria-related admissions and deaths both declined by 89%, and outpatient visits decreased by 85% at the sentinel facilities. By 2003, malaria-related outpatient cases and admissions had fallen by 99%, and malaria-related deaths had decreased by 97%. There was a concomitant marked and sustained decline in notified malaria throughout the province. No serious adverse events were associated causally with AL treatment in an active sentinel pharmacovigilance survey. In a prospective study with 42 d follow up, AL cured 97/98 (99%) and prevented gametocyte developing in all patients. Consistent with the findings of focus group discussions, a household survey found self-reported adherence to the six-dose AL regimen was 96%.ConclusionTogether with concurrent strengthening of vector control measures, the antimalarial treatment policy change to AL in KwaZulu–Natal contributed to a marked and sustained decrease in malaria cases, admissions, and deaths, by greatly improving clinical and parasitological cure rates and reducing gametocyte carriage.

Highlights

  • Malaria morbidity and mortality in Africa has risen, principally because of increasing resistance to chloroquine and sulfadoxine-pyrimethamine (SP) in Plasmodium falciparum [1,2]

  • Review of Malaria Cases and Deaths The catchment areas of the three sentinel hospitals studied include almost 285,000 (47%) of the estimated 600,000 persons at risk of malaria in KwaZulu–Natal in 2000; these facilities carry the heaviest malaria burden because they are in the highest risk area in the far northeast of the province

  • Between 2000 and 2001 the number of malaria deaths and admissions both decreased by 89%, and malaria outpatient cases decreased by 85%

Read more

Summary

Introduction

Malaria morbidity and mortality in Africa has risen, principally because of increasing resistance to chloroquine and sulfadoxine-pyrimethamine (SP) in Plasmodium falciparum [1,2]. Between 1995 and 2000, KwaZulu–Natal province, South Africa, experienced a marked increase in Plasmodium falciparum malaria, fuelled by pyrethroid and sulfadoxine-pyrimethamine resistance. In South Africa, effective vector and parasite control had historically ensured low-intensity malaria transmission. Malaria is caused by a parasite transmitted by some types of mosquito; it kills about a million people every year, especially children in Africa. The disease has become more common in recent years because the parasites have become resistant to many malaria drugs and the mosquitoes have developed resistance to insecticides. The main reasons for the increase are believed to be resistance to the drug sulfadoxine-pyrimethamine (SP) and to pyrethroid types of insecticide. Most patients (96%) said they completed the six-dose course of AL, and no serious drug side effects were reported

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.