Abstract

Aristolochic acid (AA) has been demonstrated to play a causal role in Chinese herbs nephropathy. However, the detailed mechanism for AA to induce apoptosis of renal tubular cells remains obscure. In this study, we show that AA evokes a rapid rise in the intracellular Ca(2+) concentration of renal tubular cells through release of intracellular endoplasmic reticulum Ca(2+) stores and influx of extracellular Ca(2+), which in turn causes endoplasmic reticulum stress and mitochondria stress, resulting in activation of caspases and finally apoptosis. Ca(2+) antagonists, including calbindin-D(28k) (an intracellular Ca(2+) buffering protein) and BAPTA-AM (a cell-permeable Ca(2+) chelator), are capable of ameliorating endoplasmic reticulum stress and mitochondria stress, and thereby enhance the resistance of the cells to AA. Moreover, we show that overexpression of the anti-apoptotic protein Bcl-2 in combination with BAPTA-AM treatment can provide renal tubular cells with almost full protection against AA-induced cytotoxicity. In conclusion, our results demonstrate an impact of AA to intracellular Ca(2+) concentration and its link with AA-induced cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.