Abstract

In this paper we present a numerical modeling of a nanosecond laser pulse interaction with a titanium target. We investigate the vapor plume formation and the influence of the ambient gas pressure on plume expansion dynamics. The vapor plume formation depends on the results of the heat transfer in the solid target modeling. The solid-liquid phase change is modeled by a two dimensional approach using an enthalpy formulation. The resulting plume expansion in the argon background gas is studied using the species transport model. The algebraic equations are discretized by the finite volume method implemented by Fluent CFD software [1]. The calculation results of plume expansion velocity, density, temperature and degree of ionization in the plume are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.