Abstract

The influences of arbitrary attitude angles on bird strike on a fixed rigid flat plate and a rotary jet-engine fan are studied. A verified realistic bird model and a hemispherical-ended cylinder substitute bird model are modeled by using the smoothed particle hydrodynamics (SPH) method. Since birds can strike aircraft engine from any orientations, simulations of bird models striking a rigid flat plate at random attitude angles are first done as a validation test. Results show that different attitude angles of bird model have distinct effect on the response of bird strike. As the attitude angle increases, the peak impact force becomes larger and the bird model loses more energy. By considering the rotation of the jet-engine fan ignored before, the impact behavior of realistic bird models striking on rotating engine blades from arbitrary attitude angles is investigated. Effects of the attitude angle on the most concerned impact force, kinetic energy and von Mises stress of blade roots are discussed. It is concluded that considering attitude angles of real bird and rotation of the jet-engine fan in bird strike simulation has practical significance on structural tolerant design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.