Abstract
Tip geometry modification is frequently used to suppress the tip leakage flow in the turbine cascade however a universally beneficial tip geometry modification design has not been fully discovered. In this paper, the two-surface coupling arbitrary blade tip design method in three-dimensional physical space which satisfies the simple trigonometric function law is proposed and the mathematical parametric description is presented. The effects of different arbitrary blade tips on tip leakage flow have been studied numerically in a highly loaded axial turbine cascade. The aerodynamic performance of different tips is assessed by the tip leakage mass flow rate and the total pressure loss coefficient at the exit section. The Kriging model and genetic optimization algorithm are used to optimize the arbitrary blade tips to obtain the optimal arbitrary blade tip. Compared with the flat tip, the tip leakage mass flow rate is decreased by 10.57% and the area-average total pressure loss coefficient at the exit section is reduced by 8.91% in the optimal arbitrary blade tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.