Abstract

The effects of pH and electrolyte concentration on the structure evolution, polymorphism, flow behavior and stability of solid lipid nanoparticles (SLNs), stabilized by the food-grade non-ionic surfactant Tween 80, were investigated. Development of a lipid crystal was governed by thermodynamically stable β- and β′-subunits and relative crystallinity decreased with increasing pH and electrolyte concentration. Aqueous stability and dispersibility increased with increasing pH and decreased with increasing electrolyte concentration. Flow behavior of the SLNs suspension was affected by the electrolyte concentration. However, the pH of the aqueous surfactant medium has not shown any effect on the flow behavior. From the results, it is clear that the pH and electrolyte concentration are among the potential factors which determines the stability and release properties of entrapped materials from SLNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call