Abstract

In this work, we have studied the effect of size and aqueous medium on the low-frequency dynamics, physical properties like melting temperature and glass transition temperature and chemical properties like catalytic activation energy of spherical virus using Lindemann’s criteria and Arrhenius relation under their dynamic limit. The melting temperature and catalytic activation energy decrease with decreasing size of spherical virus. The glass transition temperature which increases with decreasing size of the virus is analyzed through the size dependent melting temperature. The melting temperature and catalytic activation energy of spherical virus of particular size increases when it is embedded in glycerol or water due to mismatch of the physical properties at the interface of virus and surrounding medium. In addition, the glass transition temperature of free and glycerol/water embedded virus using low-frequency vibrational modes has been calculated under the framework of elastic continuum approximation model. The glass transition temperature of spherical virus decreases with size when embedded in glycerol or water. A correlation between and is also drawn for spherical viruses. The study can be useful for spherical virus borne therapy i.e. in detecting and killing of the spherical viruses using a principle based on acoustic phonons (sound waves) resonance.Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call