Abstract

Surfactant-free emulsion copolymerization was used to prepare methyl methacrylate-hydroxyethyl methacrylate (MMA-HEA) and methyl methacrylate-hydroxypropyl methacrylate (MMA-HPMA) latex particles. Also, glycidyl methacrylate (GMA) was grafted onto the surface of the preformed MMA-HPMA latex particles by seeded surfactant-free emulsion copolymerization. The copolymerization reactions were conducted at 75 °C using a water-soluble initiator, potassium persulfate (KPS). The morphologies of copolymer latex particles were observed using Scanning electron microscopy (SEM). The influence of different reactions parameters (the MMA saturation concentration (Sr), the KPS concentration and the aqueous solubility of the comonomers (HEA or HPMA)) on the particles average diameter and particles size dispersity was investigated. The experimental results showed that the increase of initiator concentration induces in all investigated cases the increase of particles average diameter, while the presence of HEA or HPMA as comonomers in the copolymerization reaction of MMA (1,000% Sr) lead to a decrease of particles average diameter. At small KPS concentration the latex is monodisperse, the increase of the initiator concentration leading to the formation of polydisperse latex. In the case of grafting reaction of GMA onto the monodisperse preformed MMA-HEA latex particles, although the average diameter of the final particles doubles the latex remains quasi-monodisperse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call