Abstract
The wetting and corrosion behavior of the corundum substrate anode by CaO–SiO2–MgO molten slag was investigated via the joint application of the sessile drop method with applied voltage and SEM-EDS technique. The slag drop exhibited a good wettability on the corundum substrate. The apparent contact angle at zero voltage slightly exceeded that at a 1 V applied voltage but was lower than those at 1.5 V and 2 V ones. Low applied voltage of 1 V had little effect on the corundum substrate's direct dissolution corrosion processes; high ones of not less than 1.5 V caused the electrode reaction to occur. The stirring effect of O2 bubbles from the anode reaction aggravated the substrate's direct dissolution and physical stripping. It was found that the applied voltage could inhibit the slag penetration, and the apparent contact angle had no obvious relation with the direct dissolution thickness and penetration depth. A thin but almost continuous MgO⋅Al2O3 (MA) layer could form at the slag/substrate interface at the applied voltage of 1.5 V. These results indicate the positive effect of applied voltage on the distribution of interfacial products and the molten slag penetration in reducing the corrosion of corundum anode under certain conditions. However, when the applied voltage was too high, the vigorous electrode reaction could aggravate the direct dissolution and physical stripping of the corundum anode, and damage the continuation of the formed interface product layer with a high melting point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.