Abstract
The versatility of the use of zinc oxide (ZnO) in numerous applications has attracted the attention of various industries. Various nanostructures of ZnO have been explored owing to different growth methods and applications. The purpose of this studies is to determine the significance effect of applied potential on the morphology and structural properties of ZnO nanostructures especially ZnO nanoflowers. In this research work, zinc oxide nanoflower (ZnONF) is grown on zinc foil via anodization method by using different electrolytes at different applied potential voltage. The experiment was carried out at various applied potential (10, 20 and 30V) at room temperature. All samples were annealed at 300°C for 1 hour. Anodization time play an important role in affecting the morphological, elemental and structural characteristic of zinc nanostructures. Field Emission Scanning Electron Microscopy (FESEM) was used to determine the morphology of ZnO nanoflower formed. The FESEM images shows dense nanostructured of ZnO as the applied potential were increased. The EDX results were in good agreement with the X-ray diffraction (XRD) result whereby the existence of ZnO compound and its peak intensity characteristic linearly related with applied potential. The percentage of Zn and O were recorded at 72.10% and 21.39% respectively at 20V of anodization. Two prominent peaks were shown in the graph which is 36° for ZnO (011) and 70° for Zn (110) metallic. It is expected that varied of applied potential of electrochemical anodization method were able to control the formation of ZnONF
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.