Abstract

The effect of the application of acidified porous hydrate calcium silicate (APS) in nursery bed soil and porous hydrate calcium silicate (PS) in paddy fields on the growth of rice plants (Oryza sativa L. cv. Hitomebore) was examined in 2002 and 2003. The results revealed the following: 1) Shoot dry weight of rice seedlings increased by APS treatment in nursery bed soil. The tiller number of rice plants after transplanting in both years also increased by APS treatment in nursery bed soil, and in 2003, the tiller number in the treatment with a combination of APS in nursery bed soil and PS in paddy fields was significantly higher than that in the other treatments until the maximum tiller number stage. Furthermore, the root length of rice plants 14 d after transplanting increased by APS treatment in nursery bed soil. 2) Silicon concentration in the soil solution significantly increased by PS treatment in paddy fields, and the concentration of dissolved carbon oxide increased by APS treatment in nursery bed soil. 3) Only in the APS treatment the rice yield was 341 g m−2, while 400 and 450 g m−2 in the PS and both APS and PS treatments, respectively, in 2003. Percentages of ripened grains in the plots without PS treatment ranged from 57 to 63%, respectively, while, those in the PS treated plots were 82%. The numbers of panicles and ripened grains in both APS and PS treatments were the highest among the treatments. Based on the above results, we concluded that both APS in nursery bed soil and PS in paddy field treatments were effective in improving the silicon nutrition and growth of rice plants, and that this effect was enhanced by a combination of treatments with the two.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.