Abstract

Vaccinia virus growth in BSC-1 and HeLa cells was inhibited by aphidicolin concentrations of 20 microM or more. Virus yield, which decreased only when the drug was added early in infection, was reduced several 100-fold by 80 microM aphidicolin. Viral inhibition was reversed by the suspension of the infected cells in drug-free medium. DNA synthesis in uninfected cells was reduced about 10-fold by 1 microM aphidicolin. In infected cells, aphidicolin concentrations over 10 microM were needed to reduce DNA synthesis to the same extent as in uninfected cells. Fractionation of infected cells which were incubated with 1 microM drug showed that cytoplasmic viral DNA synthesis was resistant to this aphidicolin concentration. The radioactivity associated with crude nuclei from these cells was estimated to be from vaccinia DNA synthesis. Spontaneous virus mutants which were resistant to 80 microM aphidicolin did not appear. However, after mutagenesis, mutants were generated which formed large plaques in medium with 80 microM drug. In cells with replicating aphidicolin-resistant virus, DNA synthesis was about four times more resistant to 80 microM aphidicolin than in cells with replicating wild-type virus. Chromatographic patterns of viral DNA polymerase isolated from cells with wild-type or resistant virus were similar. However, in an in vitro assay, 50% inhibition of enzyme activity was obtained with ca. 75 and 188 microM aphidicolin for the wild-type and resistant DNA polymerases, respectively. Viral enzymes were much more resistant to the drug than were the cell polymerases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.