Abstract

Side weirs are essential structural elements commonly used to control water levels in rivers and canals. If the length of the opening is limited, a labyrinth side weir can be used to increase the amount of water diverted out of the channel and the effective length. This research studied the influence of installing an antivortex structure in stepped labyrinth side weirs on discharge capacity. It has four types of antivortex installed in different hydraulic conditions at different Froude numbers, dimensionless crest height, dimensionless weir opening length, step number, and head angle. Using data from 168 experimental runs without antivortex to allow comparison and 672 experimental runs to determine the best performance of antivortex structures that improved discharge capacity, and 528 runs measured velocity to investigate the intensity of secondary currents generated by lateral flow and other hydraulic conditions, including water surface profiles. According to the research results, installing antivortices regulated the flow, significantly improved the efficiency of the single-cycle stepped labyrinth side weir, and lowered secondary flows caused by interaction with the vertical axis. Finally, the discharge coefficient improves to 18% after analyzing the best type of antivortex, considering shape and height.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call