Abstract

This study intends to better solar photovoltaic (PV) panel performance by employing anti-reflective coating and explore how dust affects solar panel effectiveness. Three equivalent solar PV panels were compared, having one of them being uncoated, the next one having a TiO2 nanomaterial coating, and the very last one having a SiO2 nanomaterial coating. PV panel surfaces are coated with superhydrophilicity TiO2 as well as superhydrophobic SiO2 nanomaterials using a cloth made of microfibers. With the aid of a photovoltaic (PV) analyser, the power output of each and every PV panel has been monitored during the month of November 2021. After one month of being exposed to the environment, the percentage improvement in efficiency for TiO2-coated panels was 7.66% and for SiO2 coated panels was 19.73% as compared to uncoated PV panels. Results demonstrate that SiO2 covered PV panels outperform the other two scenarios in terms of efficiency and power output. The frequency of photovoltaic panel washing is reduced by the application of coating. Different amounts of dust are evenly scattered on the surface of the PV panel in order to observe the effect of the dust. Additionally, as the amount of dust increases, the effectiveness of PV panels declines considerably. When 20g of dust is dispersed across the surface of a PV panel, its efficiency falls by 34.6 percent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call