Abstract

ObjectivesHydrogen peroxide (H2O2) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements.Materials and MethodsPost spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% H2O2 pre-treatment; G3, G4 and G5. After H2O2 application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (α = 0.05).ResultsThere was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). H2O2 treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest (15.96 ± 5.07MPa) and lowest bond strengths (6.79 ± 3.94) respectively.ConclusionsIt was concluded that H2O2 surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.