Abstract

Oxidative stress, specifically lipid peroxidation, is a major driving force in neurodegenerative processes. However, the exact role of lipid peroxidation remains elusive as reliable real-time detection and quantification of lipid peroxyl radicals proves to be challenging in vitro and in vivo. Motivated by this methodological limitation, we have optimized conditions for real-time imaging and quantification of lipid peroxyl radical generation in primary neuron cultures using the lipophilic fluorogenic antioxidant H4BPMHC (8-((6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-methyl)-1,5-di(3-chloropropyl)-pyrromethene fluoroborate), an α-tocopherol analog probe. By subjecting neurons to different antioxidant conditions in the presence and absence of lipid peroxidation inducing stressors (Haber-Weiss reagents), we maximized H4BPMHC sensitivity and confirmed its potential to temporally resolve subtle and marked differences in lipid peroxidation levels in real-time. Herein we report imaging and quantification of homeostatic and induced lipid peroxidation in primary neuron cultures, supporting the use of this probe for investigating healthy and diseased states. Overall these results provide the necessary foundation and impetus towards using H4BPMHC for elucidating and mapping lipid peroxyl radical contributions to ROS-associated pathological processes in neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call