Abstract

Quercetin (QT) and taxifolin (TF) are structurally similar plant-derived flavonoids that have antioxidant properties and act as free radical scavengers. The objective of this study was to investigate effects of QT and TF on nuclear maturation of porcine oocytes. Effects of TF at 0, 1, 10, and 50 μg/mL on oocyte nuclear maturation (polar body extrusion) were investigated. After incubation for 44 h, there were no significant differences between the treatment and control groups except in the 50 μg/mL group which was significantly lower (59.2%, p<0.05) than the other groups (control: >80%). After parthenogenetic activation, further in vitro development of QT- or TF-treated vs control oocytes was investigated. A significantly higher proportion of QT-treated (1 μg/mL) oocytes developed into blastocysts compared to controls (24.3% vs 16.8%, respectively); however, cleavage rate and blastocyst cell number were not affected. The TF-treated group was not significantly different from controls. Levels of reactive oxygen species (ROS) and intracellular glutathione (GSH) in oocytes and embryos in a culture medium supplemented with QT or TF were measured. Both treatment groups had significantly lower (p<0.05) levels of ROS than controls, however GSH levels were different only in QT-treated oocytes. We conclude that exogenous flavonoids such as QT and TF reduce ROS levels in oocytes. Although at high concentration (50 μg/mL) both QT and TF appear to be toxic to oocytes.

Highlights

  • Increasing the efficiency of systems for in vitro production of porcine embryos is very important because pigs have high biomedical value for areas such as xenotransplantation and as models for stem cell research (Telugu et al, 2011)

  • In Experiment 2, we evaluated the effects of including QT or TF in the in vitro matured (IVM) medium compared with a non-treated control group on the parthenogenetic development of embryos

  • Effects of QT and TF on parthenogenetically activated (PA) embryo development Based on the results from Experiment 1 and our previous study (Kang et al, 2013), 1 μg/mL of QT or TF were used in Experiment 2

Read more

Summary

Introduction

Increasing the efficiency of systems for in vitro production of porcine embryos is very important because pigs have high biomedical value for areas such as xenotransplantation and as models for stem cell research (Telugu et al, 2011). Despite intensive efforts, the yield and quality of in vitro matured (IVM) oocytes and embryos derived from them are still low compared with in vivo produced embryos. Improvements can be made by altering the culture conditions for oocyte maturation and embryo development, including the external oxygen. Oxidative stress originating from high external oxygen concentration can produce reactive oxygen species (ROS), which may be responsible for damaging embryos and inducing early embryonic developmental blocks (Guerin et al, 2001). Quercetin (QT) (2-(3,4dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) and taxifolin (TF) (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy2,3-dihydrochromen-4-one) are plant-derived flavonoids mainly found in fruits and vegetables.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call