Abstract

To investigate the effect of antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency in early-stage hypertension. We studied 527 participants from two clinical trials assessing the effect of blood pressure lowering on diastolic function. Participants were aged ≥45 years with early-stage hypertension, no heart failure, ejection fraction (EF) ≥50%, and diastolic dysfunction using Doppler echocardiography. Effective arterial afterload and its components were assessed along with measures of left ventricular (LV) structure and function prior to and after 24-38 weeks of antihypertensive therapy. Systolic blood pressure decreased from 154 ± 18 to 137 ± 15 mmHg at follow-up. Blood pressure reduction was associated with decreases in ventricular and arterial stiffness, improvements in systemic arterial compliance and resistance, enhanced LV ejection, and reduction in cardiac work (all P < 0.001). Changes in Ea/Ees ratio were inversely correlated with those in EF (r = -0.25; P < 0.001), stroke work index (r = -0.13; P = 0.007), and LV efficiency (r = -0.98; P < 0.001); and directly related to changes in mitral E/e' (r = 0.12; P = 0.01). Adjusting for age and blood pressure change, women and obese individuals had less enhancement in ventricular-arterial coupling and efficiency compared with men and non-obese individuals (P = 0.04 and 0.007, respectively). Antihypertensive therapy reduces arterial and ventricular stiffness, enhances ventricular-arterial coupling, reduces cardiac work, and improves LV efficiency, systolic, and diastolic function. Attenuated responses in women and among obese subjects suggest that structure-function changes may be less reversible in these groups, possibly explaining their greater susceptibility to ultimately develop heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call