Abstract

The polymerase chain reaction (PCR) has been considered as one of the most fundamental techniques to amplify and analyze specific DNA fragments in the field of molecular biology and clinical medicine. Recently, a variety of nanoparticles (NPs) have been regarded as a novel method to enhance both the quality and yield of PCR technique. Herein, we report the use of generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers and dendrimer-entrapped gold nanoparticles (Au DENPs) modified with polyethylene glycol (PEG) moieties and (or) acetyl groups as a novel class of enhancers to improve the PCR amplification. We set up the nonspecific PCR and two-round PCR as model systems to investigate mechanisms of enhanced PCR. Our results show that dendrimer-based derivatives seem to enhance the PCR specificity. It is worth noting that the modification of antifouling PEG significantly lowered the optimization capability of the corresponding dendrimers, although this inhibition effect can be remarkably compromised by the entrapment of Au NPs. Furthermore, we found that in the presence of Au NPs, the thermal conductivity induced by Au NPs could play the dominant role in the PCR optimization, whereas in the absence of Au NPs, the electrostatic interaction of the dendrimers with PCR components may be the major factor affecting the PCR system. Our results also showed that the optimal concentrations of the materials in the two test systems were very close, which indicates that the developed dendrimer derivatives with good thermal stability may be the efficient PCR additives for enhancing different PCR systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call