Abstract
To survive anoxia, neural ATP levels have to be defended. Reducing electrical activity, which accounts for 50% or more of neural energy consumption, should be beneficial for anoxic survival. The retina is a hypoxia sensitive part of the central nervous system. Here, we quantify the in vivo retinal light response (electroretinogram; ERG) in three vertebrates that exhibit varying degrees of anoxia tolerance: freshwater turtle ( Trachemys scripta), epaulette shark ( Hemiscyllium ocellatum) and leopard frog ( Rana pipiens). A virtually total suppression of ERG in anoxia, probably resulting in functional blindness, has previously been seen in the extremely anoxia-tolerant crucian carp ( Carassius carassius). Surprisingly, the equally anoxia-tolerant turtle, which strongly depresses brain and whole-body metabolism during anoxia, exhibited a relatively modest anoxic reduction in ERG: the combined amplitude of turtle ERG waves was reduced by ~ 50% after 2 h. In contrast, the shark b-wave amplitude practically disappeared after 30 min of severe hypoxia, and the frog b-wave was decreased by ~ 75% after 40 min in anoxia. The specific A 1 adenosine receptor antagonist CPT significantly delayed the suppression of turtle ERG, while the hypoxic shark ERG was unaffected by the non-specific adenosine receptor antagonist aminophylline, suggesting adenosinergic involvement in turtle but not in shark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.