Abstract

Experiments were conducted in a bubbling air-fluidized bed to investigate the effect of annular fins of constant thickness on heat transfer. Steady state time averaged local heat transfer coefficient measurements were made by the local thermal simulation technique in a cold bubbling fluidized bed (90 mm ID, 260 mm tall) with horizontally immersed tube initially with no fin and then with three fixed annular fins of constant thickness. Silica sand of mean particle diameter 307 μm and 200 μm were used as the bed materials. The superficial velocity of air was from minimum fluidization conditions, u mf, to approximately 3 × u mf. The results indicate that, although the heat transfer coefficient falls with the use of fins, the total heat transfer rises as a result of the greater surface area. Increasing the particle diameter reduces the heat transfer coefficient not only for unfinned horizontal tube but also for annular finned horizontal tube at the same conditions of fluidized bed. Based on the experimental data, correlations are proposed for predicting heat transfer coefficient from fluidized bed to horizontally immersed tubes with and without fins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.