Abstract

Non-oriented electrical steels are widely used in electric motors and generators as core materials to amplify magnetic flux and thus enhancing the conversion of energy. The efficiency of the motors and generators is closely related to the magnetic properties of the lamination core. In order to produce the magnetically favourable //ND texture (θ-fibre) and suppress the unfavourable //ND (γ-fiber) components in non-oriented electrical steels, two unconventional cold rolling schemes (inclined and skew rolling) were employed to process the steel. These rolling schemes have shown great potential in altering the texture of non-oriented electrical steel, especially for the 60° (inclined rolling) and 22.5° (skew rolling) angles. In this paper the effect of annealing time on the texture evolution of a 2.8 wt% Si steel was investigated using EBSD techniques. It was found that, all the unconventional rolling schemes were able to produce a strong θ-fiber texture, but the annealing time to achieve this texture was different.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call