Abstract

AbstractThe effects of annealing time and molecular weight on the strong melt memory effect observed in random ethylene 1‐alkene copolymers are analyzed in a series of model ethylene 1‐butene copolymers with 2.2 mol% branches. Melt memory is associated with molten clusters of ethylene sequences from the initial crystals that remain in close proximity and are unable to diffuse quickly to the randomized melt state, thus increasing the recrystallization rate. Melt memory persists even for greater than 1000 min annealing indicating a long‐lived nature of the clusters that only fully dissolve at melt temperatures above a critical value (>160 °C). Below the critical melt temperature, molecular weight and annealing temperature have a strong influence on the slow kinetics of melt memory. For the copolymers analyzed, slow dissolution of clusters is experimentally observed only for Mw < 50 000 g mol−1. More stable clusters that survive higher annealing temperatures display slower dissolution rates than clusters remaining at lower temperatures. The threshold crystallinity level to enable melt memory (Xc,threshold) decreases with increasing molecular weight and decreasing annealing temperature similarly to the variation of the chain diffusivity in the melt. The process leading to melt memory is thermally activated as the variation of Xc,threshold with temperature follows Arrhenius behavior with high activation energy (ca 108 kJ mol−1) that is independent of molecular weight. © 2018 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.