Abstract

This paper describes the effect of annealing temperature on the structural properties and electrical characteristics of high–κ YbTixOy gate dielectrics for indium–gallium–zinc–oxide (IGZO) thin-film transistors (TFTs). X-ray diffraction, x-ray photoelectron spectroscopy and atomic force microscopy were used to study the structural, chemical and morphological features, respectively, of these dielectric films annealed at 200, 300 and 400 °C. The YbTixOy IGZO TFT that had been annealed at 400 °C exhibited better electrical characteristics, such as a small threshold voltage of 0.53 V, a large field-effect mobility of 19.1 cm2 V−1 s−1, a high Ion/Ioff ratio of 2.8 × 107, and a low subthreshold swing of 176 mV dec.−1, relative to those of the systems that had been subjected to other annealing conditions. This result suggests that YbTixOy dielectric possesses a higher dielectric constant as well as lower oxygen vacancies (or defects) in the film. In addition, the instability of YbTixOy IGZO TFT was studied under positive gate-bias stress and negative gate-bias stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.