Abstract

In order to develop cold rolled Ti-microalloyed steel strips, the effects of annealing temperature on recrystallization behavior of experimental steel were researched by optical microscopy (OM), transmission electron microscopy (TEM) and Vickers hardness test. The annealing treatment could be divided into three distinct stages: recovery, recrystallization and grain growth. Recrystallization took place from 933 to 1033 K, during which a large number of recrystallized grains appear and hardness drops sharply. The morphology and size of TiN particles nearly remained unchanged at different stages of processing. With increasing annealing temperature, nanometer precipitates coarsened and the dislocation density was significantly reduced. In comparison with annealing time, annealing temperature was more crucial for recrystallization of cold rolled Ti-microalloyed steel. It could be concluded that the pinning force of nanometer particles on dislocations increased the recrystallization temperature. At higher annealing temperature, recrystallization took place because of precipitates coarsening caused by Ostwald ripening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call