Abstract

A high-performance ZnSnO (ZTO) thin-film transistor (TFT) was fabricated, with ZTO deposited by rf magnetron sputtering. XPS was used to analyze and study the effects of different annealing temperatures on the element composition and valence state of ZTO films. Then, the influence mechanism of annealing treatment on the electrical properties of ZTO thin films was analyzed. The results show that, with an increase in annealing temperature, the amount of metal bonding with oxygen increases first and then decreases, while the oxygen vacancy decreases first and then increases. Further analysis on the ratio of Sn2+ is presented. Electrical results show that the TFT annealed at 600 °C exhibits the best performance. It exhibits high saturation mobilities (μSAT) up to 12.64 cm2V−1s−1, a threshold voltage (VTH) of −6.61 V, a large on/off current ratio (Ion/Ioff) of 1.87 × 109, and an excellent subthreshold swing (SS) of 0.79 V/Decade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.