Abstract

This paper reports results of investigations on selected properties of vanadium oxide thin films deposited using gas impulse magnetron sputtering and annealed at temperatures in the range of 423 K to 673 K. Post-process annealing was shown to allow phase transition of as-deposited films from amorphous to nanocrystalline V2O5 with crystallite sizes in the range of 23 to 27 nm. Simultaneously, annealing resulted in an increase in surface roughness and grain size. Moreover, a decrease in transparency was observed in the visible wavelength range of approximately 50% to 30%, while the resistivity of formed vanadium pentoxide thin films was almost unchanged and was in the order of 102 Ω·cm. Simultaneously, the best optoelectronic performance, testified by evaluated figure of merit parameter, indicated the as-deposited amorphous films. Performed Seebeck coefficient measurements indicated the electron type of electrical conduction of each prepared thin film. Furthermore, gas sensing properties towards diluted hydrogen were investigated for annealed V2O5 thin films, and it was found that the highest senor response was obtained for a thin film annealed at 673 K and measured at operating temperature of 623 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call