Abstract

The effect of annealing on the self-organized morphology and component gradient distribution of films prepared from bimodal latexes blend containing 1:1 silicon-containing acrylate copolymer/silicon-free acrylate copolymer blend was studied using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy with X-ray energy-dispersive (SEM-EDX) spectrometry, and atomic force microscopy (AFM). The distribution of silicon through the whole thickness of the film as a function of annealing was investigated using confocal Raman spectroscopy (CRS). AFM results show that poly(methyl methacrylate-co-n-butyl acrylate) latex fuses to form a continuous film at 25 °C. The wettability of the acrylate components and the heterogeneous composition of poly(3-[tris(trimethylsilyloxy)silyl] propyl methacrylate-co-methyl methacrylate) result in a graded block film. ATR-FTIR and SEM-EDX measurements reveal silicon-containing components segregate at the film–air interface upon annealing. CRS further shows that the nonlinear model gradient distribution of silicon is obtained, where the content of silicon component is enhanced and it gradually varies in the bulk. When the annealing temperature increases to 120 and 180 °C, blend latexes films demonstrate varying topography and phase images, indicating phase separation is induced by annealing. Furthermore, CRS implies that the destruction of the gradient structure is attributed to the phase separation of the two blend components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.