Abstract

Cuprous oxide (Cu2O) is a promising non-toxic and low cost semiconductor with potential applications in photovoltaic devices and sensor applications. Copper oxide thin films were prepared on glass substrate by pulse laser deposition. The effects of annealing on the structural, optical and electrical properties of copper oxide thin films were studied. The films were annealed in air for different temperature ranging from 200 to 450 °C. X-ray diffraction patterns reveals that the films as-deposited and annealed at 200 and 250 °C are of cuprite structure with composition Cu2O. Annealing at 300 °C and above converts these films to CuO phase. The atomic force microscopy results show that both the phase has nanocrystalline and particle size of the films is increasing with increase in annealing temperature. The conversion from Cu2O to CuO phase was confirmed by a shift in the optical band gap from 2.20 eV to 1.74 eV. The annealing conditions play a major role in the structural properties of copper oxide thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call